На одном тропическом острове живёт 45 хамелеонов. Из них красных - 13, зелёных - 15, а остальные 17 - синие.
Два хамелеона разного цвета при встрече меняют цвет на третий. То есть, при встрече зелёного и красного хамелеона, они оба поменяют цвет на синий.
Может ли так оказаться, что по прошествии некоторого времени все хамелеоны на острове окажутся одного цвета?
Ответ:
Обозначим цвета хамелеонов: красный=0, зелёный=1, синий=2.
Тогда получается, что встречи хамелеонов описываются суммами их цветов:
0+1 → 2+2
1+2 → 0+0
0+2 → 1+1
Заметим, что при встрече хамелеонов всегда неизменной остаётся сумма их цветов, взятая по модулю 3 (то есть, остаток от деления суммы цветов на 3). В самом деле,
Это значит, что при любых встречах хамелеонов остаток от деления суммы всех цветов на 3 не изменится.
Изначально сумма цветов хамелеонов была равна 13*0 + 15*1 + 17*2 = 49.
49 mod 3 = 1, поэтому как бы ни меняли свой цвет хамелеоны, остаток от деления суммы их цветов на 3 останется 1.
В случае, если все хамелеоны стали бы одного цвета, остаток бы стал равен нулю (ведь 45*N всегда делится на три нацело), а значит, такого произойти не может.
Язык хамелеона может достигать длины большей, чем длина его тела. При охоте на насекомых хамелеон выстреливает язык на всю длину за 30 миллисекунд. После прямого попадания, как правило, мошки долго не живут.