Число Пи равно двум

См. также доказательство Пи равно 4.


Число Пи равно двум

Дано: окружность радиуса R. Кривая А (на рисунке красная) построена из двух полуокружностей радиуса R/2. Следовательно, длина кривой А равна Pi*R. Кривая B построена из четырёх полуокружностей радиуса R/4, её длина также равна Pi*R. Аналогично, кривая C построена из восьми полуокружностей радиуса R/8 и длина её так же составляет Pi*R. Продолжая построение, получим последовательность кривых, составленных из полуокружностей радиуса, стремящегося к нулю, длина всех этих кривых равна Pi*R.

Очевидно, что кривые, с увеличением числа составляющих полуокружностей и с уменьшением их радиуса, стремятся к отрезку MN, длина которого равна 2R. Таким образом, в пределе получаем:
Pi*R = 2R, следовательно,
Pi = 2

А теперь - вопрос: доказано, что число Пи равно двум. Почему же повсеместно используется более длинное и неудобное значение 3.1415...?

Ответ: 

Средняя оценка: 3.5 (41 голос)

Познавательно

Человеческая рука есть одна из первых счетных машин!

Движением пальца. Положите обе руки рядом на стол и протяните пальцы. Каждый палец слева направо будет означать соответствующее порядковое число: первый слева — 1, второй — 2, третий — 3, четвертый — 4 и т. д. до десятого, который будет обозначать число 10. Например, Нам необходимо умножить 7 на 9. Теперь поднимите седьмой палец. Число пальцев, лежащих налево от поднятого пальца, будет числом десятков произведения, а число пальцев направо — числом единиц. Налево от поднятого пальца лежат 6 пальцев, а направо — 3. Значит, результат умножения 7 на 9 равен 63.

Это удивительное на первый взгляд механическое умножение тотчас же станет понятным, если вспомнить, что сумма цифр в каждом произведении чисел таблицы умножения на девять равна девяти, а число десятков в произведении всегда на 1 меньше того числа, которое мы умножаем на 9. Поднятием соответствующего пальца это мы и отмечаем, а следовательно, и умножаем.